
DR
AF
Tjava.util.helpmepls;

if name == “ pain :”

Learning to Code from a VERY Subpar Programmer

Aditya K. Rao

Work in progress

Last Edited: November 10, 2023

DR
AF
T

“For anyone that wants to learn how to code or something”

- Adi

DR
AF
T

Contents

1 Why learn how to code 15

1.1 Interest . 15

1.2 Education . 16

1.3 Freedom . 16

2 What is coding? 17

3 How does a computer work? 19

3.1 Ones and Zeros . 19

3.1.1 Binary . 20

3.1.2 Alternative Number systems 22

3.1.3 ASCII and Unicode . 23

3.2 Von-Nueman Architecture . 24

3.2.1 Why do I need to know this? 24

3.2.2 How is a computer structured 24

4 Starting with the basics 27

4.1 Getting started . 27

4.2 New file . 27

4.3 Datatypes . 28

3

DR
AF
T

4 CONTENTS

4.3.1 Primitaves . 28

4.3.2 Basic Non-Primitaves . 28

4.4 Basic in-built functions . 28

4.4.1 print() . 28

4.4.2 input() . 28

4.4.3 len() . 29

4.4.4 type() . 29

4.4.5 Math . 29

4.4.6 a+ b . 29

4.4.7 a− b . 30

4.4.8 a ∗ b . 30

4.4.9 a/b . 30

4.5 if, then, else . 33

4.6 for and while . 34

4.6.1 while loops . 34

4.6.2 for loops . 35

4.6.3 do-while loops . 38

4.6.4 the difference . 39

4.7 functions . 39

5 Data-structures 41

5.1 Mutable vs Immutable . 41

5.2 Lists . 42

5.3 Arrays . 43

5.4 Tuples . 43

DR
AF
T

CONTENTS 5

5.5 Sets . 44

5.6 Dictionary . 47

5.7 Advanced Data-structures . 49

5.7.1 Linked Lists . 49

5.7.2 Stacks . 50

5.7.3 Queues . 51

5.7.4 Trees . 52

5.7.5 Heap . 54

5.7.6 Hashmaps . 55

5.7.7 Matrix . 56

6 Simple Algorithms 57

6.1 Sorting . 58

6.1.1 Selection Sort . 58

6.1.2 Bubble Sort . 59

6.1.3 Insertion Sort . 60

6.1.4 Quick Sort . 61

6.2 Searching . 62

6.2.1 Linear Search . 62

6.2.2 Binary Search . 63

6.3 Intro to Basic Time Complexity . 63

7 Practicing the basics 67

7.1 Calculator . 67

7.2 Chatbot . 70

7.3 Management System . 72

DR
AF
T

6 CONTENTS

7.4 Task Planner . 74

8 Learning some techniques 75

8.1 Naming Conventions . 76

8.2 Error Analysis . 78

8.3 Packages . 79

9 Logical Thinking 81

9.1 Decomposition . 81

9.1.1 Alarm Clock Example . 83

9.1.2 Morning Routine Example 85

9.2 Planning . 90

9.2.1 Psuedocode . 91

9.2.2 Flowcharts . 91

9.3 Mathematics . 91

10 Two Camps 93

10.1 Functional . 93

10.2 Object Oriented . 93

11 Functional Programming Crash Course 95

12 Object Oriented Programming Crash Course 97

12.1 Classes, Methods, and Objects . 97

12.2 Inheritance . 97

12.3 Encapsulation . 97

12.4 Abstraction . 97

DR
AF
T

CONTENTS 7

12.5 Polymorphism . 97

13 Hello World! 99

13.1 Where do I go from here? . 99

13.2 Topic/resources to look into (by subject area) 99

13.2.1 Algorithms and Mathematics 99

13.2.2 Networking . 100

13.2.3 Data Analysis . 100

A Bibliography and References 101

B Suplemental Code 103

If you want to just get up and running as fast as possible I reccomend reading

the following chapters at the minimum. However, reading the rest will give you a

much more solid grasp on these concepts.

1. Chapter 1: Why learn how to code

2. Chapter 2: What is coding

3. Chapter 4: Starting with the basics

4. Chapter 7: Practicing the basics

5. Chapter 5: Data structures

6. Chapter 9:Logical thinking

7. Chapter 8: Learning some techniques

Add the following

chap:why-code
chap:intro-coding
chap:basics
chap:basics-practice
chap:basics
chap:logical-thinking
chap:techniques

DR
AF
T

8 CONTENTS

DR
AF
T

Todo list

o Add the following . 7

o Review work and see if it needs to change 12

o Make changes to existing work . 12

o Add something is missing . 12

o Expand upon exisitng work . 12

o Rewrite or reword to improve existing work 12

o Potentially rewrite, sounds litte childish? 13

o Maybe not the best in the introduction, consider rewriting 13

o This section is written a bit poorly . 16

o Add in video here . 22

o I don’t know if this is very practical, wth was I on 23

o Talk about RGB color codes (probably the most practical use) 23

o Specific information about unicode . 24

o Talk in short about IDEs and different development enviornments 27

o java examples . 27

o Primitive Section . 28

o Non-primitive Section . 28

9

DR
AF
T

10 CONTENTS

o Might be too python specific, maybe make generic or make 2 editions for

java built ins and python built ins . 28

o Add a video on the python console . 28

o Fill info . 28

o Fill info . 29

o Fill info . 29

o Fill info . 30

o Fill info . 30

o Fill info . 30

o Fill info . 31

o Fill info . 31

o Fill info . 32

o Fill info . 32

o Fill info . 33

o Fill info . 33

o Fill info . 33

o Find a new package for algorithms and psuedocode 33

o really poorly written . 36

o Fill info . 38

o Fill info . 39

o Autocite not working for footnote in figure, find a workaround 46

o Fill info linkedlists . 49

o Fill info stacks . 50

o Fill info queues . 51

o Fill info binary trees . 52

DR
AF
T

CONTENTS 11

o Fill info binary search trees . 53

o Fill info heap . 54

o Fill info hashmaps . 55

o Fill info matrix . 56

o Fill info slection sorting . 58

o Fill info bubble sort . 59

o Fill info insertion sort . 60

o Fill info quick sort . 61

o Fill info linear search . 62

o Fill info binary search . 63

o Time Complexity Graph . 64

o Fill info Time Complexity . 64

o Fill info Chatbot Example . 70

o Fill info Management Example . 72

o Fill info Task Planner Example . 74

o Naming Coneventions . 76

o Error Analysis . 78

o Packages . 79

o add checkpoints along the way through each example to link the importnat

idea (decomponsing/operationalizing ideas) 83

o Avi’s Guest Section . 93

o Avi’s Guest Chapter . 95

o FUNC: Maybe remove this from the book and add to follow-up. This

seems a bit out of the scope of what’s required 95

DR
AF
T

12 CONTENTS

o OOPS: Maybe remove this from the book and add to follow-up. This

seems a bit out of the scope of what’s required 97

TODO KEY [IGNORE]Review work

and see if

it needs to

change

Make changes

to existing

work

Add something

is missing

Expand upon

exisitng work

Rewrite or re-

word to im-

prove existing

work

DR
AF
T

Prologue/Introduction

Hi there, my name is Adi. At the time of writing this book, I recently have

graduated from highschool and am on my way to university soon. Over the last

four or five years, I’ve developed a deep interest in the ever elusive world of code.

My main language is Python but I’ve recently diversified into many other avenues

like Java, JavaScript, HTML, CSS, C++, Dart, and a few others. However, Python

is definitely the language I have the most experience in. As such, that will be the

basis for most of the actual code snippets in this book. I will also provide a few

examples in psuedocode whenever I do something in a certain language. Potentially

rewrite, sounds

litte childish?

I don’t consider myself to be any authority on Computer Science/Engineering or

anything like that, I’m just a guy who thinks he’s got a decent method to help

some people pursue their interests. My objective with this book is not really to

help you learn a certain language, rather, it gives you the tools and knowledge to

help you learn whatever language you want. Maybe not

the best in

the introduc-

tion, consider

rewriting

Many people who want to learn how to code already have an objective in mind

and simply want the tools to make that dream a reality. Others just are interested

in the subject area as a whole, some just want to get ahead of the curb and learn

the skills required in a world ever dominated by tech. All of these are valid reasons

13

DR
AF
T

14 CONTENTS

for someone to learn to code. However, there is a difference between a person who

knows how to program, and a programmer. Thea former can give instructions to a

computer and knows what to expect as an output. The latter knows how and why

a computer is doing what it is doing to make their instructions more and more

efficient

Therefore, these are the topics that we’ll delve into in this instructional guide.

First, we’ll start with why you should be interested in code. Next, we’ll progress

into what coding actual is. Then, we’ll take a turn and look at the inner workings

of a computer and what components like the CPU and RAM actually do and how

a computer understands the instructions that you give it. Then we’ll learn some

of the basics of any major high-level programming language (examples will be

given in Python, Java, and psuedocode) and techniques to go along with it. Lastly,

we’ll go into some of the most important skills for a coder, the way you need to

think about problems. This is by far the most important - and one of the most

overlooked - skills that you develop when programming.

From there, we’ll go over the future and some good resources to look at to progress

your skills past what you have been taught here. Good luck on your coding journey.

DR
AF
T

Chapter 1

Why learn how to code

There are a variety of reasons why one would want to learn how to code. First and

foremost, ever second, there are millions of developers around the world trying to

automate something new. Everyone is searching for problems to try and solve -

every hour of every day. That means that by not learning how to code, you may

be putting yourself on the back-foot as it’s a skill more and more employers are

looking for in candidates.

1.1 Interest

For a lot of us, personal interest is what’s motivating us to learn how to code. You

could be intrigued by the software side and how a machine can be controlled and

worked with to do what you want. Essentially, we wanted to see how we make a

computer go bleep bloop using words.

15

DR
AF
T

16 CHAPTER 1. WHY LEARN HOW TO CODE

1.2 Education

You may be looking for a new route in your education career. Coding is a skill that

can help you in almost any field. Even something like history where you almost

definitively will not be writing any code, skills like Decomposition will help you

breakdown your tasks and methodically complete them.

1.3 Freedom

The last opportunity that coding gives you is freedom. In our technology enhanced

world almost everything is in some way shape or form dependent on some sort of

tech. If you want to start a business or some sort of initiative, tech skills can help

you start your concept, be a better manager by understanding the work being

conducted, or by simply allowing you to automate monotonous tasks giving you

more time to do what you want.This section is

written a bit

poorly

DR
AF
T

Chapter 2

What is coding?

What actually is coding? Many people don’t seem to understand what someone

who codes actually does. We’ve all seen those scenes in movies and TV shows where

the protagonist (or antagonist) says a bunch of tech words, sometimes throws a

”quantum” or two in there for good measure, and then how is able to stop a

software nuke (whatever that is) from annihilating downtown Brooklyn. It’s not

nearly as glamours. When you code, you’re simply giving instructions that a

machine can understand and execute.

Now, the machine doesn’t actually understand the words you write, instead it

translates them into machine code/language. This is essentially a giant list of

Ones and Zeros which the computer can use to turn switches off and on. That’s

basically how a computer works - turning switches off an on - zero and one.

By manipulating these switches, we as programmers are able to make the computer

do what we want. However, it would be incredibly laborious and confusing to type

17

DR
AF
T

18 CHAPTER 2. WHAT IS CODING?

out said 1s and 0s by hand - though this was done using “punch cards” in the early

days of the computer. Instead, we write code in what are known as “high-level

languages.” These essentially make it easier for people to read and write code,

allowing a machine to convert the words (aka syntax) into machine code.

That is all that coding is, giving a machine a set of instructions and hopeing it does

what you want. My friend likes to joke around, saying that “Computer Science

should be considered an experimental science” because it can be mostly trial and

error at times as you try to figure out how something works.

There are a few different types of coders: front-end and back-end. There are of

course a few other flavors - i.e. mobile and game development - but these are the

two most prominent ones. By no means do you have to stick to one once you choose

it, but the skill sets for each are quite different. A front-end developer are generally

people who focus on the user experience aka UX and user interface aka UI.

If you’re look at a website, that’s typically the work of a front-end developer. On

the flip side, we have back-end developers. Back-end developers are responsible

for delivering content and internal logic of how some system works. For example,

if you login to a website the process by which your account is authenticated and

validated is the work of a back-end developer.

DR
AF
T

Chapter 3

How does a computer work?

Knowing how a computer works is what separates the good from the great. When

you understand how a computer works you, it’s easier to make code more efficient

and understand how your code works on the lower-levels (machine and assembly

language).

3.1 Ones and Zeros

When you write code, you’re essentially writing a bunch of words which get turned

into 0s and 1s. These 0s and 1s subsequently are used to tell the computer whether

to turn a switch on or off (also known as high or low as if the switch is on then

a higher current is sent across the wire and vice versa). This number system is

known as binary or base-2. On the other hand, our number system is called decimal

or base-10 because we have 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

19

DR
AF
T

20 CHAPTER 3. HOW DOES A COMPUTER WORK?

3.1.1 Binary

Binary only has two digits - hence base-2 - which are 0 and 1. Each place value is

a multiple of 2 with the first being 20 = 1, then 21 = 2, 22 = 4, 23 = 8 and so on

as can be seen in Table ??.

Decimal Value 8 4 2 1

Binary Value

To write a number from decimal to binary you simply take the biggest possible

number from left to right. For example, if I have 11, first I’d subtract: 11− 8 = 3

since 11 ≥ 8and then add a 1 under the 8 in place value. Then I’d check if 3 ≥ 4

- since that’s false, we add a 0 underneath 4 in place value and move to the next

digit. We check if 3 ≥ 2, which is true, therefore we 3− 2 = 1. Finally we end by

checking if 1 ≥ 1 if it is, then we add a 1 in the ones place. This can be seen in

Table ??:

Decimal Value 8 4 2 1

Binary Value 1 0 1 1

Table 3.1:
Decimal Number: 11
Binary Number: 1011

An alternative method is you keep dividing by 2. If you get the remainder as 0,

you add a 0 to your number, if you get a 1, you add a 1 (don’t change the number

you’re diving by). Lastly, you write the entire number our backwards. This can

be illustrated in Table ?? below with 29:

DR
AF
T

3.1. ONES AND ZEROS 21

Working Remainder

29÷ 2 = 14 1

14÷ 2 = 7 0

7÷ 2 = 3 1

3÷ 2 = 1 1

1÷ 2 = 0 1

Table 3.2:
Decimal Number: 29

Binary Number: 11101

Now in Computer science we have a few terms for certain sets of data. A single

digit is called a bit. If we have a binary number that’s 4 bits, it’s called a nibble;

if it’s 8 bits long, it’s a byte. From here it’s easier to understand. 1024 bytes= 1

kibibyte (KiB). However, this is only if we’re being extremely technically accu-

rate. Generally 1024 bytes is taught - and learned - as a kilobyte (kB); in reality

a kilobyte is actually 1000 bytes (hence kilo). 1024 KiB = 1 MiB (Mebibyte) 1000

kB = 1 MB (Megabyte) and so on.

I additionally want to add some general information that can be useful in your

everyday life. There’s a difference between KiB, kB, and kb (and MiB, MB, and Mb

and others). The first is a Kibibyte which is 1024 bytes. The second is a Kilobyte

which is 1000 bytes. The last is 1024 bits not bytes. Internet service providers

like to use this trick to make their speeds seem faster than they actually are -

specifically with kB and kB (or MB and Mb). Computer/Mobile manufactures

do something similar with KiB and kB (MiB and MB) to make it seem like their

devices have more storage than they do.

DR
AF
T

22 CHAPTER 3. HOW DOES A COMPUTER WORK?

There are more complex things in binary, such as binary addition, subtraction,

multiplication, and division. However, I don’t think it’s really necessary or practi-

cal most of the time. If you’re interested, I recommend taking a look at this video

Add in video here

3.1.2 Alternative Number systems

Alternatively, hexadecimal - base-16 - is commonly used as a representation for

binary numbers as it can easily be used to show nibbles with a single character.

Hex has 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F). This means we

can represent any byte with two digits. This is quite convenient whenever we do

need to look at the raw binary of some data.

An example of 255 in hexadecimal is FF. You can quickly convert between decimal

and hex by multiplying each place value by the corresponding power of 16. For

example, AF is 10 × 161 + 15 × 160 = 160 + 15 = 175. If you want to convert

decimal to hex, I find the easiest way is first to convert the number into binary,

then convert that into hex.

If you want to convert binary to hexadecimal, you separate your binary number

into nibbles. Then you convert each nibble into decimal (adding all bit values)

and then turn that into the corresponding hexadecimal number. The following is

an example with 10011110

DR
AF
T

3.1. ONES AND ZEROS 23

Binary Value 1 0 0 1 1 1 1 0

Decimal Value 8 + 0 + 0 + 1 8 + 4 + 2 + 0

Hex Value 9 14

Hex Number 9 E

Table 3.3:
Binary Number: 1001110
Hexadecimal Number: 9E

One practical use of hexadecimal is when reading through machine code. When

you open some files, you’ll be greated with a range of hexadecimal numbers. Some-

times, it can be useful to know hexadecimal to debug these files (i.e. knowing the

exit byte in a document to understand why your code is failing). I don’t know

if this is very

practical, wth

was I on

Another practical use would be simply representing large numbers easily, some-

times it’s just easier to read them.

Talk about

RGB color

codes (prob-

ably the most

practical use)

3.1.3 ASCII and Unicode

One important implementation of binary is ASCII and Unicode. This is a certain

format of binary number used to store characters also known as symbols, letters,

and numbers.

The former, ASCII, stands for the “American Standard Communication for Infor-

mation Interchange.” Essentially, it provides a convenient way for all computers

to render documents and information. ASCII characters tend to have the form

“0100 0000” with different combinations of the first two bits representing different

characters (i.e. “0110 0000” for capital letters).

DR
AF
T

24 CHAPTER 3. HOW DOES A COMPUTER WORK?

ASCII was revolutionay, however, overtime with the widespread global use of com-

puters, there simply weren’t enough bits to represent every characters/symbol from

every language. Hence, unicode was createdSpecific infor-

mation about

unicode 3.2 Von-Nueman Architecture

Von-Nueman Architecture is the fundamental organization of most modern com-

puter systems. It essentially boils the system down into smaller subsystems.

3.2.1 Why do I need to know this?

I found myself wondering this pretty often. No doubt it was somewhat interesting,

but I initially couldn’t see any practical application as a software developer.

However, I later found this application - optimization. Understanding how the

computer works is crucial to writing clean, neat, and efficient code. This is impor-

tant in production code as any code that is clean, neat, and efficient is generally

scale-able and easy to maintain.

If you’re just going through this guide to learn how to automate tasks

and do some basic scripting then you’ll probably not need any of this

information. However, if you do intend to go into software development, then I

definitely recommend going through this section and doing some further research.

3.2.2 How is a computer structured

All the subsystems in a Von-Neuman system are interconnected by data highways

called ”buses.” There are 3 primary buses that you need to be concerned with:

DR
AF
T

3.2. VON-NUEMAN ARCHITECTURE 25

the ”data” bus, the ”address” bus, and the ”control” bus.

These buses are either uni-directional (only send data 1 way), bi-directional (send

data both ways), or the can be both depending on the context.

DR
AF
T

26 CHAPTER 3. HOW DOES A COMPUTER WORK?

DR
AF
T

Chapter 4

Starting with the basics

4.1 Getting started

This part is pretty simple but is important. You need to download your language

of choice and get an IDE (Integrated Development Environment) or an editor of

some sort - the second part isn’t required, but is definitely good for quality of life.

My current go-to IDE for python is Spyder 1, I also love VS Code2 for most other

languages (and some python as well). If you’re just getting started and just want

to play around a bit, you can use the basic Python IDE. Talk in short

about IDEs

and different

development

enviornments

4.2 New file

java examples

1https://www.spyder-ide.org/
2https://code.visualstudio.com/

27

https://www.spyder-ide.org/
https://code.visualstudio.com/

DR
AF
T

28 CHAPTER 4. STARTING WITH THE BASICS

4.3 Datatypes

4.3.1 Primitaves
Primitive Sec-

tion

4.3.2 Basic Non-PrimitavesNon-primitive

Section

4.4 Basic in-built functionsMight be too

python spe-

cific, maybe

make generic

or make 2 edi-

tions for java

built ins and

python built

ins

4.4.1 print()

The print function is going to be one of the main tools you’ll use to learn python.

All that the print function does is output whatever you put inside the brackets

into the console.

Add a video on the python console

4.4.2 input()

Input is another similar

DR
AF
T

4.4. BASIC IN-BUILT FUNCTIONS 29

Fill info

4.4.3 len()

Fill info

4.4.4 type()

4.4.5 Math

4.4.6 a+ b

Fill info

DR
AF
T

30 CHAPTER 4. STARTING WITH THE BASICS

4.4.7 a− b

Fill info

4.4.8 a ∗ b

Fill info

4.4.9 a/b

Fill info

DR
AF
T

4.4. BASIC IN-BUILT FUNCTIONS 31

min()

Fill info

max()

Fill info

DR
AF
T

32 CHAPTER 4. STARTING WITH THE BASICS

abs()

Fill info

round()

Fill info

DR
AF
T

4.5. IF, THEN, ELSE 33

pow()

Fill info

complex()

Fill info

4.5 if, then, else

If conditions make up the inner workings of conditional logic. The idea behind

them is very simple: if a certain property is true then do a certain task. In other

words, if the answer to a question is yes, then you get a certain response.

DR
AF
T

34 CHAPTER 4. STARTING WITH THE BASICS

Fill info
Find a new

package for

algorithms and

psuedocode

4.6 for and while

For and while loops will become your best friends over time. What they essentially

do is allow you to run a certain amount of code over and over again. For example,

say I had some code for my daily routine, and I wanted to run it every day for a

year, I could use a for-loop to run my daily routine code 365 times (one for each

day in the year).

Similarly, say I wanted to run this daily routine code forever while I’m alive. I

could use a while loop which runs until a certain condition is met (until I’m dead).

This is a subtle difference, but an important one. We will go over when to use

each loop later in this section.

4.6.1 while loops

To write a while loop, we do the following:

Defining a While Loop

1 # Creating a while loop

2

3 # Setting a counter variable

4 count = 0

5

6 # while boolean statement is true , print "Hello World"

7 while count < 5:

8 print("Hello World")

9

DR
AF
T

4.6. FOR AND WHILE 35

10 # Increase counter variable by + 1 to avoid an infinite

loop

11 count = count + 1

Notice that we use a boolean statement right after the while and then a “:”. a

Boolean statement is any statement which evaluates to True or False. When the

statment is true, the while loop will run, when the statement is false, it will not.

In this case, as long as our counter variable is strictly less than the number in

the boolean statement the while loop will run. If they’re equal it will not (since it

is < and not ≤).

In Ex.?? the following will be outputed (this method of writing outputs is called

a “trace table”).

count while count < 5 OUTPUT

0 True “Hello World”

1 True “Hello World”

2 True “Hello World”

3 True “Hello World”

4 True “Hello World”

5 False “”

Table 4.1: Truth table for code example

4.6.2 for loops

For loop are just like while loops except they only execute a definite number of

times. That is to say that we cannot have an infinite for loop. This is the opposite

DR
AF
T

36 CHAPTER 4. STARTING WITH THE BASICS

of a while loop which can be written to run an infinite number of times until a

certain condition is met.

As you write more and more code, you’ll notice that for loops are used a decent

amount more than while loops. One simple reason when starting out is that there’ll

be less of a change you’ll accidentally write an infinite for loop than a while loop

(which may crash your computer).really poorly

written
To write a for loop, simply, do the following:

Defining a For Loop

1 # Creating a for loop

2

3 # We define a counter variable "i" which will increase with

every loop by 1

4 # Until it reaches 5, then the loop will stop

5 for i in range (0,5):

6 print("Hello World")

Notice in this code example, there are a few new things. Firstly the range(a, b,

c) function (where a, b, c are integer/whole numbers) makes a range object with

values starting from a, increasing by c for all values less than (not including) b.

This can be turned into a list for us to better understand by doing list(range(a,

b, c))

Listing 4.1: How the Range function works label

1 # You don’t need to put in all a, b, c

2

3 # by default , range will always start at 0

4 list(range (5)) = [0, 1, 2, 3, 4]

DR
AF
T

4.6. FOR AND WHILE 37

5

6 # You can set the lower bound (inclusive) of the range

7 list(range(1, 10)) = [1, 2, 3, 4, 5, 6, 7, 8, 9]

8

9 # You can also set how much to increment by

10 list(range(0, 10, 2)) = [0, 2, 4, 6, 8]

11

12 # This incrementing can by negative to go in decending

order

13 list(range(5, 0, -1)) = [5, 4, 3, 2, 1]

14 list(range (15, 5, -3)) = [15, 12, 9, 6]

Then, in the loop, we instantiate (fancy word for create/initialize) an incrementing

variable (changing variable/quantity) i which takes on each value in this list in

order going to the next value at the end of the loop.

This is a lot of information to take in, I reccomend reading this paragraph over a

few times to fully absorb it. While reading, look back at the code example and

track and identify each statement in code. We can illustrate the output of our

code example again using a truth table.

i OUTPUT

0 “Hello World”

1 “Hello World”

2 “Hello World”

3 “Hello World”

4 “Hello World”

Table 4.2: Truth table for code example

DR
AF
T

38 CHAPTER 4. STARTING WITH THE BASICS

4.6.3 do-while loops

Fill info

DR
AF
T

4.7. FUNCTIONS 39

4.6.4 the difference

Fill info

4.7 functions

DR
AF
T

40 CHAPTER 4. STARTING WITH THE BASICS

DR
AF
T

Chapter 5

Data-structures

One crucial aspect to all programming languages is the data structures that they

have to offer. We’ll specifically look at Python and Java, however, these sometiems

vary based on different languages.

5.1 Mutable vs Immutable

The first important thing to understand is mutability. In short, an immutable

data structure/type is unable to be changed. Conversely, a mutable data struc-

ture/type can be changed.

This begs the question, why would we ever want to use an immutable data

structure? Essentially, they take up less memory and increase speed. However, for

most uses that we’ll be going through today, the data type will be mutable.

41

DR
AF
T

42 CHAPTER 5. DATA-STRUCTURES

5.2 Lists

The first important data structure is a list. In Python, these are mutable. Lists

in Python also do not care what type of data is in them. This is different than

other languages like C++ which can only contain one type of data in a list (i.e.

you can’t have a number and a word/string in the same list in C++, but you can

in Python).

Lists allow us to reference and store data in many different ways and their use

cases are countless. In fact, I’d go so far as to say that they’re the most used data

type/structure outside of simple variables.

In order to create a list in Python, we simpy use square brackets “[]”.

1 # Creating a list in Python

2

3 # The following is an empty list

4 lst_def = []

5

6 # or this does the same thing (but this isn’t the preferred way

)

7 lst_def = list()

8

9 # The following is a list of integers

10 lst_1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

11

12

13 # The following is a list of characters

14 lst_2 = [’A’, ’B’, ’C’, ’D’]

15

DR
AF
T

5.3. ARRAYS 43

16

17 # The following is a list of multiple data types

18 lst_3 = [1, 2.3, ’A’, ’Word’, True]

5.3 Arrays

Arrays are like lists but are generally of set length and data type. Python doesn’t

actually have a set way of doing arrays, instead there are tuples (which we will ex-

plore next). This may be a bit confusing as in other languages arrays are typically

completely immutable (but again this depends on the language).

5.4 Tuples

Tuples are Python’s version of an array, however, they’re completely immutable.

This means that they cannot be changed ; once they data they’re initialized is in

them, they cannot be changed. In order to create a list we simple use parentheses

“()”.

1 # Creating a tuple in Python

2

3 # The following is an empty tuple

4 tup_def = ()

5

6 # or this does the same thing (but this isn’t the preferred way

)

7 tup_def = tuple()

8

9 # The following is a list of integers

DR
AF
T

44 CHAPTER 5. DATA-STRUCTURES

10 tup_1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

11

12

13 # The following is a list of characters

14 tup_2 = (’A’, ’B’, ’C’, ’D’)

15

16

17 # The following is a list of multiple data types

18 tup_3 = (1, 2.3, ’A’, ’Word’, True)

There are many reasons as to why we’d use a tuple over an array or list. While

they may be less functional (they have fewer built in extra functions), they do

take up less memory and are decently faster for large data. This is mainly because

they’re immutable. Additionally, as we’ll see in the next section (5.6), we can

use tuples as keys in the dictionary. We cannot do this with lists.

5.5 Sets

Sets are a form of mutable data type which essentially act like a bag for data.

The data in a set is not ordered/indexed in any way (unlike a list which has a

specified index/order). These sets are a representation of mathematical sets if you

are familiar with them. To define a set we use curly brackets (“{}”) and just list

our data.

1 # Creating a set in Python

2

3 # The following is an empty set

4 set_def = set()

DR
AF
T

5.5. SETS 45

5

6 # NOTE that set_def = {} IS NOT a set , it is a dictionary

7

8 # The following is a set of characters

9 set_1 = {’A’, ’B’, ’C’, ’D’, ’E’ }

10

11 # The following is a set of integers

12 set_2 = {100, 1, 3, 12, 24 }

13

14 # The following is a set of random data types

15 set_3 = {(1, 2), 100, 525, 125, ’ksrar ’, True}

Sets have special functions associated with them. For example, ∈ is in, intersection

(A ∩ B) is A.intersection(B), and union (A ∪ B) is A.union(B). If you are

unfamiliar with sets, you may be more familiar with venn diagrams, you can see

the representation of these operations in Fig. 5.1.

DR
AF
T

46 CHAPTER 5. DATA-STRUCTURES

Figure 5.1: A Venn diagram of unions and intersections for two sets, A and B and
their complements, within a universe Ω A,B

Image taken from listed source1Autocite not

working for

footnote in

figure, find a

workaround

It should be noted that the set comliment (A′) is not well defined in python as

it relied on the existance of a universe Ω. We can see how each of these actions

actually work by running the following code.

>>> Set 1: {A, B, C}

>>> Set 2: {B, D, E}

>>>

>>> Set 1 intersection Set 2: {B}

>>> Set 1 union Set 2: {A, B, C, D, E}

1J. Cardinal. “Sets, Graphs, and Things We Can See: A Formal Combinatorial Ontology for
Empirical Intra-Site Analysis”. In: Journal of Computer Applications in Archaeology 2 (Apr.
2019), pp. 56–78. doi: 10.5334/jcaa.16.

https://doi.org/10.5334/jcaa.16

DR
AF
T

5.6. DICTIONARY 47

5.6 Dictionary

This is just an implementation of a more complex datastructure called a hashmap.

Hashmaps essentially take a key and associate them with a specific value. To

define a dictionary, we do almost hte exact same thing as a set, we use curly

brackets (“{}”). However, the key difference is we have to define a key value

pair where we use a colon (“:”) to seperate the key and the value. If this was a

bit hard to understand, I would suggest looking at the example below:

1 # Creating a set in Python

2

3 # The following is an empty dictionary

4 dict_def = dict()

5

6 # or this does the same thing

7 dict_def = {}

8

9 # The following is a dictionary of integers keys and character

values

10 dict_1 = {1: ’A’,

11 2: ’B’,

12 3: ’C’,

13 4: ’D’,

14 5: ’E’ }

15

16 # The following is a dictionary of character keys and integer

values

17 dict_2 = {’A’: 100,

18 ’B’: 1,

19 ’C’: 3,

DR
AF
T

48 CHAPTER 5. DATA-STRUCTURES

20 ’D’: 12,

21 ’E’: 24 }

22

23 # The following is a dictionary of tuple keys and random values

24 dict_3 = {(1, 2): 100,

25 (2, 1): 525,

26 (0, 0): 125,

27 (5, 1): ’ksrar’,

28 (5, 1): True}

It is worth noting that you dont have to put the keys-value pairs on seperate lines,

but is general practice.

DR
AF
T

5.7. ADVANCED DATA-STRUCTURES 49

5.7 Advanced Data-structures

5.7.1 Linked Lists

Fill info

linkedlists

DR
AF
T

50 CHAPTER 5. DATA-STRUCTURES

5.7.2 Stacks

Fill info stacks

DR
AF
T

5.7. ADVANCED DATA-STRUCTURES 51

5.7.3 Queues

Fill info

queues

DR
AF
T

52 CHAPTER 5. DATA-STRUCTURES

5.7.4 Trees

Binary Trees

Fill info binary

trees

DR
AF
T

5.7. ADVANCED DATA-STRUCTURES 53

Binary Search Trees

Fill info binary

search trees

DR
AF
T

54 CHAPTER 5. DATA-STRUCTURES

5.7.5 Heap

Fill info heap

DR
AF
T

5.7. ADVANCED DATA-STRUCTURES 55

5.7.6 Hashmaps

Fill info

hashmaps

DR
AF
T

56 CHAPTER 5. DATA-STRUCTURES

5.7.7 Matrix

Fill info ma-

trix

DR
AF
T

57

DR
AF
T

58 CHAPTER 6. SIMPLE ALGORITHMS

Chapter 6

Simple Algorithms

6.1 Sorting

6.1.1 Selection Sort

Fill info slec-

tion sorting

DR
AF
T

6.1. SORTING 59

6.1.2 Bubble Sort

Fill info bub-

ble sort

DR
AF
T

60 CHAPTER 6. SIMPLE ALGORITHMS

6.1.3 Insertion Sort

Fill info inser-

tion sort

DR
AF
T

6.1. SORTING 61

6.1.4 Quick Sort

Fill info quick

sort

DR
AF
T

62 CHAPTER 6. SIMPLE ALGORITHMS

6.2 Searching

6.2.1 Linear Search

Fill info linear

search

DR
AF
T

6.3. INTRO TO BASIC TIME COMPLEXITY 63

6.2.2 Binary Search

Fill info binary

search

6.3 Intro to Basic Time Complexity

This bit may confuse a lot of people. In my opinion, it’s definetly one of the harder

concepts to pickup and it took me a while to gian an intuition on it. While you

don’t necessarily need to know this in order to learn how to code, it is quite useful

DR
AF
T

64 CHAPTER 6. SIMPLE ALGORITHMS

in your coding literacy. This is primarily because when you learn the language

of big-O notation, you learn how to read the efficiency of algorithms and, by

extention, how to critque your own work and make it better.Time Com-

plexity Graph

DR
AF
T

6.3. INTRO TO BASIC TIME COMPLEXITY 65

Fill info Time

Complexity

DR
AF
T

66 CHAPTER 6. SIMPLE ALGORITHMS

DR
AF
T

Chapter 7

Practicing the basics

In order to get the hang of anything, I believe the best way to go about any-

thing is to practice by actually implementing and applying the things you learnt.

Therefore, I have provided a few practice projects in this chapter.

7.1 Calculator

Building a basic calculator, in my opionion, will get you well aquainted with the

absolute basics of any language. By expanding on calculator base, you can start to

learn about more sophisticated features such as functional and even object oriented

programming. In the appendix, I have provided my approaches to different design

concepts.

To start with applying conditional logic (“if-statements”), I first want you to take

an input asking the user what type of operation they want to do.

1 number_1 = int(input("Input your first number: "))

67

DR
AF
T

68 CHAPTER 7. PRACTICING THE BASICS

2 number_2 = int(input("Input your second number: "))

3 operation = int(input("What type of operation do you want to do

- Add (1), Subtract (2), Multiply (3), or Divide (4)?: "))

4

5 if operation == 1:

6 answer = number_1 + number_2

7

8 elif operation == 2:

9 answer = number_1 - number_2

10

11 elif operation == 3:

12 answer = number_1 * number_2

13

14 elif operation == 4:

15 answer = number_1 / number_2

16

17 else:

18 print("Invalid operation")

19

20 print("The answer is: " + str(answer))

DR
AF
T

7.1. CALCULATOR 69

DR
AF
T

70 CHAPTER 7. PRACTICING THE BASICS

7.2 Chatbot

Fill info Chat-

bot Example

DR
AF
T

7.2. CHATBOT 71

DR
AF
T

72 CHAPTER 7. PRACTICING THE BASICS

7.3 Management System

Fill info Man-

agement Ex-

ample

DR
AF
T

7.3. MANAGEMENT SYSTEM 73

DR
AF
T

74 CHAPTER 7. PRACTICING THE BASICS

7.4 Task Planner

Fill info Task

Planner Exam-

ple

DR
AF
T

75

DR
AF
T

76 CHAPTER 8. LEARNING SOME TECHNIQUES

Chapter 8

Learning some techniques

8.1 Naming Conventions

Naming Con-

eventions

DR
AF
T

8.1. NAMING CONVENTIONS 77

DR
AF
T

78 CHAPTER 8. LEARNING SOME TECHNIQUES

8.2 Error Analysis

Error Analysis

DR
AF
T

8.3. PACKAGES 79

8.3 Packages

Packages

DR
AF
T

80 CHAPTER 8. LEARNING SOME TECHNIQUES

DR
AF
T

Chapter 9

Logical Thinking

One of the most important reasons to learn how to code is logical thinking and

breaking down problems. Traditionally, when you’re taught how to code, you’re

like a computer in itself in the sense that your instructor gives you instructions

and you are expected to execute them.Q

9.1 Decomposition

One of the key ideas on computer science is operationalization or the decomposi-

tion of ideas. At the end of the day computer science is about solving problems.

Solving a big complicated problem is just that - complicated. Therefore it becomes

important that we break down big problems into smaller ones, then break those

into even smaller ones, and so on. Essentially, we want a problem so simple that

it’s almost as easy as writing a function or even a single line of code.

This is probably the most importnat ideas in learning computer science because

81

DR
AF
T

82 CHAPTER 9. LOGICAL THINKING

it applies to life as a whole. If there is one take away in your learning computer

science, let it be this.

Decomposition is a hard skill to learn, but is not difficult to master. It all boils

down to practice. Hence, we will first through the “theory” on how to break an

idea down. Then go through a few lay examples and then finally finish off with

technical examples.

To decompose a problem/system, we need to think of all the smaller problems/sys-

tems it’s made up of. For example, take the simple equation below.

50x+ 10 = 60

Here, to decompose the problem and solve for x, we need to do the following

operations:

1. Isolate Variable (x should be on one side alone)

2. Simplify problem

3. Solve for x

Therefore, we’ve decomposed the problem. Now lets put this into action

DR
AF
T

9.1. DECOMPOSITION 83

50x+ 10 = 60

Step 1 :

50x+ 10− 10 = 60− 10

=⇒ 50x = 60− 10

Step 2 :

=⇒ 50x = 50

Step 3 :

=⇒ x = 1

Hence, we have used decomposition for a simple example. Say now we move on to

a more complicated case.

Say we need to code an alarm clock. There are a lot of functionality we need to

think about. A good exercise is to give this a shot yourself before reading further.

add check-

points along

the way

through each

example to

link the im-

portnat idea

(decompon-

sing/oper-

ationalizing

ideas)

9.1.1 Alarm Clock Example

Say we have an alarm clock. At a high level, an alarm clock must perform the

following functions:

� Alarm

� Time

DR
AF
T

84 CHAPTER 9. LOGICAL THINKING

These can further be decomposed into the following

� Alarm

– Sound Alarm

– Change Alarm Time

– Snooze Alarm

– Alarm Volume

� Time

– Show Time

– Change Time

– Update Time (every minuete)

This should be enough for us to start writing our code. However, say these smaller

tasks are still to complicated, we can go ahead and start decomposing these smaller

problems even more:

� Alarm

– Sound Alarm

* Compare current time to alarm time

* Send output to activate speaker to start alarm

* Get button input to stop alarm

– Change Alarm Time

* Get Button Input

DR
AF
T

9.1. DECOMPOSITION 85

* Get dial input to change time

* Set dial input and change alarm time internally

* Lock alarm time until changed again

– Snooze Alarm

* · · ·

– Alarm Volume

* · · ·

� Time

– Show Time

* · · ·

– Change Time

* · · ·

– Update Time (every minuete)

* · · ·

And we can continue doing this on and on until we get to a set of tasks which are

easy enough for us to solve and implement directly.

9.1.2 Morning Routine Example

Now lets do another example unrelated to Mathematics or Computer Science. Say

we need to organize our daily routine and make an indepth checklist as to what

DR
AF
T

86 CHAPTER 9. LOGICAL THINKING

we need to do.

� Wake Up

� Organize Room

� Get Ready

� Eat Breakfast

� Leave for work/school

These are our high-level tasks, now lets decompose them:

� Wake Up

– Set alarm the night before

– Open eyes, turn on lights

– Get out of bed

– Turn off alarm

– Don’t go back to sleep (I struggle with this one some times)

� Organize Room

– Make bed

– Put out clothes for the day

– Collect daily items (i.e. bag)

� Get Ready

– Go to bathroom and take a shower

DR
AF
T

9.1. DECOMPOSITION 87

– Dry off and put on clothes

– Put on socks and shoes

� Eat Breakfast

– Make breakfast

– Get utensils

– Make coffee

– Eat food that your made

– Drink coffee

� Leave for work/school

Notice that there are still some tasks which may not be simple enough while there

are others which are just at the right level of simplificiation. Hence, let’s do one

more decomposition pass.

� Wake Up

– Set alarm the night before

– Open eyes, turn on lights

– Get out of bed

– Turn off alarm

– Don’t go back to sleep (I struggle with this one some times)

� Organize Room

– Make bed

DR
AF
T

88 CHAPTER 9. LOGICAL THINKING

* Flatten base cover

* Retuck sheet

* Fold duvet and place at foot of bed

* Put pillows at head of bed

* Organize any other misc items

– Put out clothes for the day

– Collect daily items (i.e. bag)

* Get wallet

* Get phone

* Pack bag (if not already packed)

* Get bag

* Get keys

* Get jacket (if going to rain or raining)

� Get Ready

– Go to bathroom and take a shower

– Dry off and put on clothes

– Put on socks and shoes

� Eat Breakfast

– Make Breakfast

DR
AF
T

9.1. DECOMPOSITION 89

* Decide on breakfast (say eggs with toast)

* Get pan

* Heat up pan

* Get eggs

* Get spices

* Get oil

* Put oil in pan

* Put eggs in pan

* Add spices

* Cook eggs as desired

* Get plate

* Put eggs on plate

* Get toaster

* Put toast in toster

* Put toast on plate

– Get utensils

– Make coffee

– Eat food that your made

– Drink coffee

DR
AF
T

90 CHAPTER 9. LOGICAL THINKING

� Leave for work/school

Notice that as we decompose some of our steps start to look like steps. That means

we’re transitioning from breaking down our problem to actually solving it. Hence,

in the above example, the “Make breakfast” tasks would actually be better suited

to psuedocode or a flowchart, both of which we will explore in the next section.

9.2 Planning

We can now take this idea of decomposition further and use it in planning. There

are two primary “formal” methods we will cover - Psuedocode and Flowcharts.

Both are important in different ways. The former allows use to specifically write

out the logic of our code and how it works without committing it to a specific

language instead being written in an English-adjacent language called pseudocode.

While there are no universally specific guidelines for writing psuedocode, I will

outline some traditionally accepted practices.

Flowcharts on the other hand allow us to generally write out the logic of our code.

That is to say, we can more holistically see how are code works from a higher level.

This allows others (and us) to understand how are code works. It also helps with

the idea of decomposition which was covered in the previous section.

The overall objective of this chapter is to give you and introduction to both of these

planning tools. Probably they’re most important purpose is not solely helping

you understand your code more but also helping others understand your work.

Therefore, these methods greatly help with collaboration on bigger projects (which

to many people’s disdain, you’re probably going to have to do eventually if you

DR
AF
T

9.3. MATHEMATICS 91

plan on doing almost anything meaningful).

9.2.1 Psuedocode

9.2.2 Flowcharts

9.3 Mathematics

As with anthing in almost anything STEM, mathematics plays a huge role in

computer science. While at the top level, you don’t need to deal with a lot of it, I

do still think that some of the basics are worth learning as they can come in handy

later on. The primary thing that’s worth learning is some introduction to logic.

While this can get very complicated, we will only touch upon the basics of it here

(with provided resources listed). First, lets define some symbols.

Logic Symbol Name Description

¬ NOT The “negation” of a boolean statement

∧ AND The conjunction of two boolean functions/statements

∨ OR The disjunction of two boolean functions/statements

Note that we’ve introdued some fancy terminology in the table above. The nega-

tion of a statement is the opposite of what it says. If something is true, its

negation will be false (and vice versa). Note that in the truth table above, we’ve

used 1 = TRUE and 0 = FALSE as is sometimes is used. We can also write this

as a logic gate which is a more computer science approach and is a more visual

approach to how truth tables and logic works.

DR
AF
T

92 CHAPTER 9. LOGICAL THINKING

x ¬x
1 0
0 1

x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

The conjunction of a statement is true if (and only if) each statement is true. The

disjunction of a statement is true if (and only if) any of its statements are true.

Understanding these statements is part of the fundementals of how computers

work. As discussed in 3.1 everything in a computer is a 1 or 0. Like we did

above, this is just a true or a false. Logic gives us the tools to abstractify binary

operations and come up with a much more sophisticated approach to problems.

x y x ∨ y
0 0 0
0 1 1
1 0 1
1 1 1

DR
AF
T

Chapter 10

Two Camps

10.1 Functional

Avi’s Guest Section

10.2 Object Oriented

93

DR
AF
T

94 CHAPTER 10. TWO CAMPS

DR
AF
T

Chapter 11

Functional Programming Crash

Course

Avi’s Guest Chapter

FUNC: Maybe remove this from the book and add to follow-up. This seems a

bit out of the scope of what’s required

95

DR
AF
T

96 CHAPTER 11. FUNCTIONAL PROGRAMMING CRASH COURSE

DR
AF
T

Chapter 12

Object Oriented Programming

Crash Course

OOPS: Maybe remove this from the book and add to follow-up. This seems a

bit out of the scope of what’s required

12.1 Classes, Methods, and Objects

12.2 Inheritance

12.3 Encapsulation

12.4 Abstraction

12.5 Polymorphism

97

DR
AF
T

98 CHAPTER 12. OBJECT ORIENTED PROGRAMMING CRASH COURSE

DR
AF
T

Chapter 13

Hello World!

13.1 Where do I go from here?

Aftering going through this book you should be well equiped to tackle any basic

to intermediate programming problems that come your way. That being said, a

lot of learning how to code relies on practice and familiarity.

13.2 Topic/resources to look into (by subject area)

13.2.1 Algorithms and Mathematics

Formal Logic

Linear Algebra

Linear Algebra Done Right (S. Axler): Linear Algebra Done Right by Shel-

don Axler is a great book for developing a good foundation in linear algebra. I

99

DR
AF
T

100 CHAPTER 13. HELLO WORLD!

believe this is the one area of mathematics which is crucial to a good understand-

ing of compuer science. The primary shortcoming of this text is Axler does not

go very indepth into determinents (by design), however, I believe this leads to a

more solid understanding of the important aspects. You can find Axler’s website1

which contains links to buy a copy of the textbook.

Linear Algebra (J. Hefferon): I have not personally used this book but I’ve

seen it reccomend quite a bit. The main draw is that this textbook (and question

set) are completely free to use. Dr. Hefferon also has a few other books availible

for free on his website (which I would highly reccomend checking out).

13.2.2 Networking

13.2.3 Data Analysis

Sentdex

1https://linear.axler.net/

https://linear.axler.net/

DR
AF
T

Appendix A

Bibliography and References

Cardinal, J. “Sets, Graphs, and Things We Can See: A Formal Combinatorial On-

tology for Empirical Intra-Site Analysis”. In: Journal of Computer Applications

in Archaeology 2 (Apr. 2019), pp. 56–78. doi: 10.5334/jcaa.16.

101

https://doi.org/10.5334/jcaa.16

DR
AF
T

102 APPENDIX A. BIBLIOGRAPHY AND REFERENCES

DR
AF
T

Appendix B

Suplemental Code

103

	Why learn how to code
	Interest
	Education
	Freedom

	What is coding?
	How does a computer work?
	Ones and Zeros
	Binary
	Alternative Number systems
	ASCII and Unicode

	Von-Nueman Architecture
	Why do I need to know this?
	How is a computer structured

	Starting with the basics
	Getting started
	New file
	Datatypes
	Primitaves
	Basic Non-Primitaves

	Basic in-built functions
	print()
	input()
	len()
	type()
	Math
	a+b
	a-b
	a*b
	a/b

	if, then, else
	for and while
	while loops
	for loops
	do-while loops
	the difference

	functions

	Data-structures
	Mutable vs Immutable
	Lists
	Arrays
	Tuples
	Sets
	Dictionary
	Advanced Data-structures
	Linked Lists
	Stacks
	Queues
	Trees
	Heap
	Hashmaps
	Matrix

	Simple Algorithms
	Sorting
	Selection Sort
	Bubble Sort
	Insertion Sort
	Quick Sort

	Searching
	Linear Search
	Binary Search

	Intro to Basic Time Complexity

	Practicing the basics
	Calculator
	Chatbot
	Management System
	Task Planner

	Learning some techniques
	Naming Conventions
	Error Analysis
	Packages

	Logical Thinking
	Decomposition
	Alarm Clock Example
	Morning Routine Example

	Planning
	Psuedocode
	Flowcharts

	Mathematics

	Two Camps
	Functional
	Object Oriented

	Functional Programming Crash Course
	Object Oriented Programming Crash Course
	Classes, Methods, and Objects
	Inheritance
	Encapsulation
	Abstraction
	Polymorphism

	Hello World!
	Where do I go from here?
	Topic/resources to look into (by subject area)
	Algorithms and Mathematics
	Networking
	Data Analysis

	Bibliography and References
	Suplemental Code

